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A Mathematical Model of a 
Gigahertz Transverse 
Electromagnetic Cell, I. 

INTRODUCTION 
The Gigahertz Transverse Electromagnetic Cell (GTEM) has become a popular tool in the 
electromagnetic compatibility community for testing radiated emission and immunity (sus- 
ceptibility) work [5, 6, 13, 19]. Recently it has found use in the electromagnetic dosimetry 
community [8]. Whatever the application, it is important to know exactly what the field 
characteristics are inside the cell, both before and after a test object is placed in it. The field 
characteristics in an empty cell can be obtained by direct measurement. However, once an 
object is placed in the cell, the field is disturbed and it is no longer easy to know or even mea- 
sure the field experienced by the object [14, 15, 16]. Mathematical modeling hence becomes 
indispensable. Using measurements from an empty cell, one can validate a mathematical 
model of the cell. Knowing the electrical properties of the object being tested, one can then 
estimate the field experienced by the test object using the model. Moreover, the scattered 
field from the object, if measured,.can also be used to further validate the mathematical 

model. 
Mathematical analysis of various aspects of GTEM cells can either be theoretical [11, 

17, 18, 21, 22, 23, 28, 29, 31, 32] or computational (modeling) [9, 12, 16, 25]. Here we 
describe our initial efforts to model a 1.92m-long GTEM cell (Sandia National Laboratories, 
Albuqueque, New Mexico) using a finite difference time domain method. The GTEM cell 
modeled is part of an ultrawide-band (UWB) exposure system currently in use at U.S. 
Army-Medical Research and Material Command (USA-MCMR) to study the bioeffects of 
RF radiation in experimental animals. A precise knowledge of the electric field inside the 
test subject is required to calculate the energy absorption rate in the animal. 
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THE GTEM CELL 

A detail description of the GTEM cell and related electronics and issues can be found in 
the references [1, 24]. A schematic of the UWB exposure facility and acquisition system is 
shown in Figure 1 and the dimensions of the GTEM Cell (in a vertical cross section) are 

shown in Figure 2. 

A MATHEMATICAL MODEL 

To calculate the electromagnetic field inside the GTEM cell, we use a finite difference time 
domain (FDTD) code modified from Kunz and Luebbers [20]. This.is basically the Yee's 
algorithm [30] enhanced with more recent treatment of absorbing boundary conditions [3, 4]. 

A. Source 

Instead of modeling the complete GTEM cell starting from the source (a spark-gap pulse 
generator) outside the main chamber, we assumed that the field inside the cell is driven by an 
equivalent source that is spread over an excitation plane (more precisely, a square annulus) 
located near the entrance to the cell. In particular, if the base plane (cross section AA' in 
Figure 2) of the cell is located at z = 0, then the excitation plane is assumed to be located 
at z = zc where ze has a magnitude equivalent to the thickness of a few Yee's cells. The 
excitation plane, a region ft in the cross section of the GTEM cell at z = ze, is depicted in 

Figure 3. 

Figure 3: Excitation Plane fi. (Not to scale) 



Assume, at a given time t, the inner rectangle, which corresponds to the septum of the 
GTEM cell, has a uniform voltage V^pt(f) and the outer rectangle, which corresponds to the 

ex 
conductive walls of the cell, is grounded, then the electric field E    (x,y,ze,t) in Cl induced 

hy Vs-pt(t) can be calculated by 

ex 
E    {x,y,zt,t) = -V<f>(x,y,t) 

where the potential 6 is the unique solution of the 2-dimensional Laplace's Equation 

VV = 0 in ß (1) 

subject to the boundary condition 

Six      t)= i VsP^   f°r (X'y) e inner rectanSle 

[       0        for (x,y) £ outer rectangle 

It can easily be verified that if 

where Vm is a constant and ^(t) is an arbitrary function of t and if <f>m(x,y) is the unique 
solution to Equation (1) subject to the boundary condition 

6  (x v)= { Vrn    f°r (X,y^ ^ inner rectanSle 

<Pml   .y;      |   Q     for (a;,y) £ outer rectangle 

then 

where 

#*,y,0 = &»(*,.y)-*(0 
6X 

E    (x,y,z.,t) = -VS{x,y,t) 

. = -*(t)Vcf>Jx,y) 

■ = *(*)E!X(*,y) 

CX E
m (*,y)-■=-v<l>J*,v) 

This implies that we only have to solve Equation (1) once for ^>m(a;,y) to determine the exci- 
,ex 

tation field E    (x,y,ze,t) for all time t. Some additional discussion on the implementation 
of excitation sources in FDTD can be found itf [2, 7]. 



B. Boundary Conditions 

The GTEM cell is terminated by an anechoic wall consisting of a series of resistive low 
frequency terminators and pyramidal microwave absorbers for the high frequency end of 
the frequency spectrum. These are constructed to minimize reflections at the terminal end 
that could compromise the field at a test site within the cell. We model this by placing 
a Berenger's perfectly matched layer (PML) [3, 4] at this terminal end to simulate non- 
reflection of electromagnetic waves. We also place a PML at the base plane (cross section 
AA' in Figure 2) to absorb fictitious backward waves generated by the assumed excitation 
plane. The four other walls of the GTEM cell are modeled faithfully as perfectly electrically 
conducting (PEC) boundary. 

C. Staircase Errors 

The GTEM cell is flared. The side walls cannot all be aligned with the rectangular grid axes 
in FDTD. It is well known that this leads to so-called staircase errors in the computations. 
For the work reported here, we took the simple, albeit inefficient, approach of using smaller 
mesh sizes to minimize these errors. More sophisticated methods such as locally conforming 
FDTD schemes [26] will be used in the future. 



RESULTS 
We have tested our computational method on several different TEM cells using a variety 
of input sources. The results have been excellent on simple cases and reasonable on more 

complex ones. We will report on two cases below. 

I. A Non-flared Square cell 

In this computational experiment, we use. the square TEM cell (the " NBS cell ") studied 
first experimentally by Crawford [10] and latter theoretically (quasi-statically) by Spiegel 

[27]. This square cell has dimensions shown in Figure 4. 

Figure 4: NBC Cell. 

Unlike Spiegel's theoretical cell, the cell we studied has a finite non-zero thickness that 
is one FDTD cell thick. The FDTD cell we used is 5 mm thick. The input for this compu- 
tational experiment is sinusoidal. Three frequencies were chosen: 100 MHz, 500 MHz, and 1 
GHz. The cutoff frequency for the first order TE mode (TEi0) for this cell is slightly above 

500 MHz [10]. 
We picked a the TEM cell that is 100 cm long (in the z-direction) and monitored the 

electric field at approximately the same locations where measurements were made by Craw- 
ford [10] and also by Spiegel, et al [27]. The cross section in which these points are taken 
is halfway (z = 50 cm) along the TEM cell. The results are shown in Figures 4 through 
7. Figure 5 shows the potential field in the cross section at z = 2.5 cm. Figures 6 through 
8 are the relative time-averaged magnitude of the electric field when using the frequencies 
100 MHz, 500 MHz, and 1 GHz respectively. Also shown are the measured values. There 
is general agreement between the measured and the calculated. As expected, the first two 
calculated fields are practically identical, as they are both below cutoff. 
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II. A flared cell driven by a wide-band pulse 

The GTEM cell shown in Figure 1 has dimensions shown in Figure 2 and Figure 10.  The 
UWB pulse applied to the GTEM cell can be approximated by 

where 

V(t) = Vm ■ 9(t) 

Vm 

a 

=- 130 kV 

= e-at-e-ßt 

= 1.19661E + 9s_1 

= . 1.99573E + 10 s" 

This pulse has a rise time of 150 ps and a pulse width of 1 ns. This is depicted in Figure 11. 
Setting Vspt(t)  =  Vm and solving the Laplace's equation in Equation (1) yields the 

solution 4>m{x,y) similar in shape to that shown in Figure 5. The corresponding vector field 

E    (x,y) is shown in Figure 9. 

- - - -• N\   l   l   I 

•/Mr 
 ^-y  / t    I 

I 

I    t 

/   / 

\  \ V v 
\   S   v 

60 65 
X 

Figure 9: Calculated E Field in Excitation Plane for V=42.75 kV. 
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Using this pulse, we calculated the field inside the cell using FDTD. The main parameters 

used are: 

space discretization: Ace = 0.005 m 

space discretization: Ay = 0.005 m 

space discretization: Az = 0.005 m 

time step: At = 9.629 x 10"12sec 

These values are dictated by the high frequency content of the pulse and the stability 

requirement of the method [20]. 
In our simulation, we calculated the E field at several points in the proximity of the 

location where the actual measurements had previously been taken. These selected points 
are in the center of cross section BB' (Figure 2) near the bottom of the cell. Figure 12 
compares the calculated Ey at the selected points to the measured Ey. The amplitude Vm 

of the voltage source at the excitation plane was picked (trial and error) to be 42.75 kV in 
this particular calculation. 

We have also measured and calculated several indices related to the E field at each point 
in a grid (not shown here) on the bottom wall ("parallel" to the septum). Among these 
indices is the peak intensity of the E field. From this a contour plot is made. This is shown 
in Figure 13. We used the model to calculate the peak E field intensity at approximately 
the same points and constructed the corresponding contour plot. This is shown in Figure 
14. The two contour plots, Figure 13 and Figure 14 are qualitatively similar. (At this time, 
we have not fine tuned the choice of the amplitude Vm of the voltage source at the excitation 
plane to make the comparison better.) 

12 
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CONCLUSION 

In this report we have described a general mathematical model that can be used to estimate 
the electric field in a large class of TEM cells. An excitation plane was used to simulate 
the input to the GTEM cell and the popular FDTD method was then used to calculate the 
field anywhere and anytime inside the cell. To our knowledge this is the first documented 
use of FDTD to model an ultrawide-band exposure system. We tested our model on the 
simple (square) NBC cell and on a flared GTEM cell. The results have been reasonable in 
all cases. We believe this effort has laid the foundation for further fruitful research. Future 
improvements to the model include implementing methods to reduce staircase errors and to 
allow for multiple grids. These improvements are necessary for the efficient and accurate 
modeling of relatively small objects placed in the cell. When accomplished,-they will have 
increased the scope and capability of electromagnetic compatibility and dosimetry research. 
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